It’s not easy to explain about Convolution, so I just pick up several article links which would be helpful for you to understand convolution better.and you can use it for references.
GIMP Documentation on Convolution Matrix <— really detailed on explanation.
I write this post just to introduce about Convolution and prepare for the next several posts on image processing, cool effects!
At the very first, you need a base for computing Convolution Matrix on Android, don’t you?
so here is the code:
so here is the code:
1.code of convolution matrix:
package pete.android.study;
import android.graphics.Bitmap;
import android.graphics.Color;
public class ConvolutionMatrix
{
public static final int SIZE = 3;
public double[][] Matrix;
public double Factor = 1;
public double Offset = 1;
//Constructor with argument of size
public ConvolutionMatrix(int size) {
Matrix = new double[size][size];
}
public void setAll(double value) {
for (int x = 0; x < SIZE; ++x) {
for (int y = 0; y < SIZE; ++y) {
Matrix[x][y] = value;
}
}
}
public void applyConfig(double[][] config) {
for(int x = 0; x < SIZE; ++x) {
for(int y = 0; y < SIZE; ++y) {
Matrix[x][y] = config[x][y];
}
}
}
public static Bitmap computeConvolution3x3(Bitmap src, ConvolutionMatrix matrix) {
int width = src.getWidth();
int height = src.getHeight();
Bitmap result = Bitmap.createBitmap(width, height, src.getConfig());
int A, R, G, B;
int sumR, sumG, sumB;
int[][] pixels = new int[SIZE][SIZE];
for(int y = 0; y < height - 2; ++y) {
for(int x = 0; x < width - 2; ++x) {
// get pixel matrix
for(int i = 0; i < SIZE; ++i) {
for(int j = 0; j < SIZE; ++j) {
pixels[i][j] = src.getPixel(x + i, y + j);
}
}
// get alpha of center pixel
A = Color.alpha(pixels[1][1]);
// init color sum
sumR = sumG = sumB = 0;
// get sum of RGB on matrix
for(int i = 0; i < SIZE; ++i) {
for(int j = 0; j < SIZE; ++j) {
sumR += (Color.red(pixels[i][j]) * matrix.Matrix[i][j]);
sumG += (Color.green(pixels[i][j]) * matrix.Matrix[i][j]);
sumB += (Color.blue(pixels[i][j]) * matrix.Matrix[i][j]);
}
}
// get final Red
R = (int)(sumR / matrix.Factor + matrix.Offset);
if(R < 0) { R = 0; }
else if(R > 255) { R = 255; }
// get final Green
G = (int)(sumG / matrix.Factor + matrix.Offset);
if(G < 0) { G = 0; }
else if(G > 255) { G = 255; }
// get final Blue
B = (int)(sumB / matrix.Factor + matrix.Offset);
if(B < 0) { B = 0; }
else if(B > 255) { B = 255; }
// apply new pixel
result.setPixel(x + 1, y + 1, Color.argb(A, R, G, B));
}
}
// final image
return result;
}
}
2. note that:
- You can find more articles on Internet for details. However, you can see that Convolution is applied very widely in image processing for using filters.
- Some image effects are better to implement using Convolution Matrix method like: Gaussian Blur, Sharpening, Embossing…
3. conclusion:
- Some deep information about Convolution Matrix.
- Know what is convolution matrix and where it can be used.
4. about the post:
- The code seems to explain itself due to comments, and is very easy to understand.
- Don’t mind to write a comment whatever you like to ask, to know,to suggest or recommend.
- Hope you enjoy it!
- Hope you like and comment on it!
5. Source Code:
you can download the source code here
you can download the source code here
Cheers,
Hamad Ali Shaikh