It’s not easy to explain about Convolution, so I just pick up several article links which would be helpful for you to understand convolution better.and you can use it for references.
GIMP Documentation on Convolution Matrix <— really detailed on explanation.
I write this post just to introduce about Convolution and prepare for the next several posts on image processing, cool effects!
At the very first, you need a base for computing Convolution Matrix on Android, don’t you?
so here is the code:
so here is the code:
1.code of convolution matrix:
package pete.android.study; import android.graphics.Bitmap; import android.graphics.Color; public class ConvolutionMatrix { public static final int SIZE = 3; public double[][] Matrix; public double Factor = 1; public double Offset = 1; //Constructor with argument of size public ConvolutionMatrix(int size) { Matrix = new double[size][size]; } public void setAll(double value) { for (int x = 0; x < SIZE; ++x) { for (int y = 0; y < SIZE; ++y) { Matrix[x][y] = value; } } } public void applyConfig(double[][] config) { for(int x = 0; x < SIZE; ++x) { for(int y = 0; y < SIZE; ++y) { Matrix[x][y] = config[x][y]; } } } public static Bitmap computeConvolution3x3(Bitmap src, ConvolutionMatrix matrix) { int width = src.getWidth(); int height = src.getHeight(); Bitmap result = Bitmap.createBitmap(width, height, src.getConfig()); int A, R, G, B; int sumR, sumG, sumB; int[][] pixels = new int[SIZE][SIZE]; for(int y = 0; y < height - 2; ++y) { for(int x = 0; x < width - 2; ++x) { // get pixel matrix for(int i = 0; i < SIZE; ++i) { for(int j = 0; j < SIZE; ++j) { pixels[i][j] = src.getPixel(x + i, y + j); } } // get alpha of center pixel A = Color.alpha(pixels[1][1]); // init color sum sumR = sumG = sumB = 0; // get sum of RGB on matrix for(int i = 0; i < SIZE; ++i) { for(int j = 0; j < SIZE; ++j) { sumR += (Color.red(pixels[i][j]) * matrix.Matrix[i][j]); sumG += (Color.green(pixels[i][j]) * matrix.Matrix[i][j]); sumB += (Color.blue(pixels[i][j]) * matrix.Matrix[i][j]); } } // get final Red R = (int)(sumR / matrix.Factor + matrix.Offset); if(R < 0) { R = 0; } else if(R > 255) { R = 255; } // get final Green G = (int)(sumG / matrix.Factor + matrix.Offset); if(G < 0) { G = 0; } else if(G > 255) { G = 255; } // get final Blue B = (int)(sumB / matrix.Factor + matrix.Offset); if(B < 0) { B = 0; } else if(B > 255) { B = 255; } // apply new pixel result.setPixel(x + 1, y + 1, Color.argb(A, R, G, B)); } } // final image return result; } }
2. note that:
- You can find more articles on Internet for details. However, you can see that Convolution is applied very widely in image processing for using filters.
- Some image effects are better to implement using Convolution Matrix method like: Gaussian Blur, Sharpening, Embossing…
3. conclusion:
- Some deep information about Convolution Matrix.
- Know what is convolution matrix and where it can be used.
4. about the post:
- The code seems to explain itself due to comments, and is very easy to understand.
- Don’t mind to write a comment whatever you like to ask, to know,to suggest or recommend.
- Hope you enjoy it!
- Hope you like and comment on it!
5. Source Code:
you can download the source code here
you can download the source code here
Cheers,
Hamad Ali Shaikh